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Abstract

We study how engagement-maximizing personalization shapes exposure and learn-
ing on social media. In a tractable model, users observe private signals, post, and
consume a ranked feed; utility combines sincerity, conformity, and decision accu-
racy. Engagement is endogenous and users are heterogeneous: rational users choose
it; naive users continue scrolling via a payoff-dependent hazard. Truthtelling is an
equilibrium—unique for rationals—so platforms act through ordering alone. The
optimal ranking is similarity-first, producing echo-chamber exposure; engagement is
finite and, for naives, learning stalls at scale. Reverse-chronological and balanced-
insertion counterfactual algorithms restore diversity; network effects may fail for

naives.
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1 Introduction

While entertainment may be the primary reason users open TikTok or Instagram, social
media has become a pivotal source of news and opinion formation. More than half of
U.S. adults now report getting news from social platforms, and the shares have risen
steeply in recent years: between 2020 and 2024, the fraction of adults regularly accessing
news on TikTok grew from 3% to 17%, and on Instagram from 11% to 20%." This scale
and centrality have sharpened concerns that engagement-maximizing algorithms amplify
polarization, misinformation, and echo chambers. The public debate, energized since the
2016 U.S. election, initially focused on the spread of false content and platform incentives
(Silverman, 2016; Allcott and Gentzkow, 2017) and has since broadened with empirical
evidence on the welfare costs of social media use (Allcott et al., 2022; Braghieri et al., 2022;
Bursztyn et al., 2023) and on algorithmic forces that trap users in ideologically narrow
information environments (Levy, 2021). Internal platform documents further indicate
awareness of such harms, especially for vulnerable groups (Horwitz et al., 2021). At
the same time, social media affords sizable benefits—from access to timely information
and social connection to professional networking—underscoring that policy must navigate
genuine trade-offs (Allcott et al., 2020; Armona, 2023).

The feed is the critical design lever. Before roughly 2009, most platforms presented
posts in reverse-chronological order.? Today, the feed is a personalized, ordered list,
optimized to maximize attention (engagement). Because platform revenue is advertising-
based, maximizing profits closely aligns with maximizing engagement, not with maxi-
mizing learning.® Empirical evidence links algorithmic personalization to higher time-on-
platform and more addictive usage (Guess et al., 2023). These observations motivate a
positive, micro-founded analysis of how an engagement-maximizing platform designs the
feed, how users communicate and learn within it, and which regulatory tools improve
outcomes.

We build a tractable model of communication and learning through personalized feeds
(the ordered list of posts a user reads when scrolling down). Users receive private signals
about an unknown state, post a message, and consume a feed whose order is strategically
designed by the platform. Users’ payoffs have two components. The first, within-the-
platform utility, includes (i) direct gratification from reading, (ii) a taste for sincerity
(reporting a message close to one’s private signal), and (iii) disutility from disagreement

(conformity costs).? The second, action utility, rewards taking a decision close to the true

1 Pew Research Center, Social Media and News Fact Sheet, data available here.

2 Facebook began introducing personalized feeds in 2009; Twitter (now X) and Instagram transitioned
in 2015-2016; TikTok launched with a curated feed.

3 As an example, see here and Kamath et al. (2014) on RealGraph predictor, the base of Twitter’s
recommendation algorithm.

4 Conformity is a core force in social influence, defined as matching attitudes and behaviors to group
norms (Cialdini and Goldstein, 2004). We model it as a reduced-form preference, consistent with


https://www.pewresearch.org/journalism/fact-sheet/social-media-and-news-fact-sheet/
https://blog.x.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm

state after reading the feed (e.g., whether to vaccinate when facing contested information
about vaccine efficacy).” Engagement is the number of posts read. We allow heterogeneous
behavioral frictions: rational users choose how far to scroll; naive users continue according
to a smooth, increasing function of their instantaneous within-platform utility, consistent
with habit formation and present bias in digital consumption (Hoong, 2021; Allcott et al.,
2022).

Methodologically, we impose improper priors so that each user treats her own signal
as the local anchor. Our first result pins down the channel through which platforms
exercise influence: truthtelling is an equilibrium of the messaging game under any feed
design. Among rational users the equilibrium is unique, and for naive users it is the only
equilibrium robust to any continuous, increasing continuation rule. Hence the platform
cannot manipulate beliefs by inducing misreporting; it operates solely through who ap-
pears and when in the user’s feed. This separability delivers closed-form posteriors and
sharp comparative statics for ranking and engagement.

We leverage this benchmark to deliver three main findings. The first one is that
engagement-optimal feeds generate echo chambers and, for naives, unravel the classic
wisdom-of-the-crowds result (Golub and Jackson, 2010). For naive users, the structure
of the platform-optimal algorithm is similar first: it orders others by expected similarity
to the focal user. The resulting feed is a perfect echo chamber (Pariser, 2011). Because
the implemented length is finite under any admissible continuation rule, feed positions
concentrate on close copies as the platform’s selection set grows, so the posterior variance
fails to fall and learning vanishes as platform size grows large. Echo chambers thus arise
from engagement incentives even when messages are truthful. For rational users, we show
in a simplified two-type environment that the platform optimally front-loads same-type
content to reduce early disagreement and implements a longer path that introduces cross-
cutting signals later; among feeds that maximize implemented engagement, there is a
front-loaded representative. Echo chambers are therefore not a mere artifact of behavioral
naiveté.

The second main contribution consists on studying policy-relevant alternatives to per-
sonalization: the reverse-chronological algorithm and a minimal corrective, the breaking-
echo-chambers algorithm. The reverse-chronological algorithm (our non-profiling bench-
mark, brought back to platforms through the EU’s Digital Services Act) restores exposure
diversity by randomizing order. For a fixed length, it converges to a wisdom-of-the-crowds
variance benchmark, but it reduces within-platform utility when early disagreement is
most costly and therefore shortens naive engagement; we derive the naive welfare com-

parison to the engagement-optimal feed and the rational user’s stopping condition under

rational accounts of social conformity and herding (Bernheim, 1994; Chamley, 2004). See also Mosleh
et al. (2021) for evidence on shared identity and conformity in online diffusion.

5 For example, Loomba et al. (2021) document that exposure to misinformation reduced vaccine accep-
tance in the U.S. and U.K. by about six percentage points.



random order. We then analyze a minimal breaking-echo-chambers tweak that inserts a
maximally opposite account at the top of the platform-optimal algorithm for naives’ feed
(a closest-first feed) and leaves the rest intact. The insertion raises early disagreement
(and can shorten engagement) but lowers posterior variance sharply; in large platforms,
this modification beats closest-first whenever users place sufficiently high weight on learn-
ing.

The third main contribution is to show that personalization reshapes network effects
and hence the scope for competition. Personalization allows finer matching as a plat-
form grows. For rational users, implemented feeds increasingly front-load similarity of
low conformity cost while still delivering enough later diversity, so expected utility rises
with platform size. For naive users, the same force can reduce welfare: larger selection
sets let the platform fill the top of the feed with close copies, eroding the informational
value of additional posts; network effects need not arise. These forces bear directly on pol-
icy. Non-profiling defaults (reverse-chronological) temper echo chambers but rarely dom-
inate engagement-optimal designs in overall welfare. A complementary market-design
lever is horizontal interoperability: by sharing network effects across providers, rivalry
shifts toward the non-interoperable dimension—the ranking algorithm itself—disciplining

engagement-only designs and moving equilibrium feeds toward the utilitarian benchmark.

1.1 Related literature

Our paper connects the economics of recommendation and curation (e.g., Aridor et al.,
2024) with social learning under correlated signals (Golub and Jackson, 2010) and confor-
mity motives (Bernheim, 1994; Cialdini and Goldstein, 2004), but shifts the focus to the
timing of exposure in personalized feeds. Unlike models in which platforms amplify misin-
formation to stimulate sharing (Acemoglu et al., 2023), our users truthfully communicate
and value accuracy; echo chambers arise nonetheless because engagement incentives lead
the platform to sequence like-minded content early, raising continuation among naive
users and, in a two-type rational benchmark, lowering early disagreement at the cost
of diversity. This temporal mechanism complements media-economics accounts of distor-
tion through content selection or slant (Reuter and Zitzewitz, 2006; Ellman and Germano,
2009; Gentzkow and Shapiro, 2010; Abreu and Jeon, 2019; Kranton and McAdams, 2022):
here the distortion is primarily in when rather than what users see. Closest to us, Ace-
moglu et al. (2023) study sequential sharing with reputational concerns and show that
platforms benefit from homophily because it lowers scrutiny of misinformation; by con-
trast, we analyze simultaneous truthful posting, model learning explicitly via posterior
precision, and derive echo chambers without misinformation or reputational motives. We
are also related to models where profit-motivated platforms harm user welfare by com-
plementing time spent or manipulating information flow (e.g., Mueller-Frank et al., 2022;

Beknazar-Yuzbashev et al., 2024); we model continuation through a bounded-hazard,



addiction-driven process and separate within-platform utility from action utility to quan-
tify learning losses.

Empirically, our predictions match empirical work showing reverse-chronological al-
gorithms reduces usage while broadening exposure and weakening ideological cluster-
ing (Guess et al., 2023), consistent with evidence on algorithmic feeds and engagement
(Kitchens et al., 2020; Gauthier et al., 2025) and with debates on “filter bubbles” (Pariser,
2011; Levy, 2021; Sunstein, 2017; Holtz et al., 2020). Finally, our policy counterfactuals
relate to proposals that curb echo chambers through ranking changes rather than content
moderation (Jackson et al., 2022; Guriev et al., 2023) and to market-level discussions
of interoperability and contestability under the EU’s Digital Markets Act (DMA) and
DSA (Kades and Scott Morton, 2020; Bourreau and Kramer, 2022; Bourreau et al., 2023;
Dhakar and Yan, 2024; Belleflamme and Peitz, 2020; Banchio et al., 2025).

The remainder of the paper proceeds as follows. Section 2 introduces the environ-
ment. Section 3 establishes truthtelling and characterizes platform-optimal personal-
ization, showing when it generates echo-chamber exposure for naive and rational users.
Section 4 quantifies the effects of personalization on learning and Section 5 evaluates
two policy-relevant counterfactuals. Section 6 analyzes network effects and discusses the

policy implications. Section 7 concludes.

2 A model of communication and learning through

personalized feeds

We study a platform that curates personalized feeds and users who communicate and
learn from them. The section first presents the model, then discusses and interprets the

key assumptions.

Players. There is a social media platform p and a set, U, of n users indexed ¢ that
visit it. We assume a complete network so that each user ¢’s neighborhood is N; =
U\{i}. Expectations with respect to the platform’s information are denoted E,|[.]; user i’s

expectations are E;[.].

Information structure. There is a state of the world, 6, for which we assume improper

priors.® Each user i observes a private signal
0; =0+ ¢, e=(e1,...,&0) ~N(0,%),

where ¥ = (0;;) is symmetric positive definite and common knowledge. Under improper
pI‘iOI‘S, 0 | 92 ~ N(Qiagii)v and 9]‘ | 0% ~ N(Qz, O + 045 — 20'7;]‘) for all] *1 according to

Lemma A.1.

6 Equivalently, one can take a normal (proper) prior with variance 72 and let 72 — oco.



User choices. Fach user i (i) posts a scalar message m; € R, (ii) observes an endoge-
nously determined number of feed posts ¢; € {1,...,n}, and (iii) after reading such posts

chooses an action a; € R.

Platform choices. The platform designs an algorithm consisting of an assignment that,
given a pair of users i, j, tells which position user j’s message occupies in user ¢’s feed.
Hence, an algorithm F = (%,;);cu is a collection of bijections .%; € Bij ({1, .o,n—1}, Ni).
We interpret .%;(r) as the r-th position in i’s feed. Given engagement e;, the realized feed

Fo = {F(1),..., Fi(e)}.

For notation purposes, we will assume that .%;(1) = i for every user.

Users preferences. Users derive utility from two streams: within-the-platform utility
and action wutility. Within-the-platform (instant) utility has three components: (i) a
positive linear payoff coming from reading messages; (ii) sincerity: users dislike deviating

from their own signals,” and (iii) conformity: disagreeing with others’ opinions is taxing.

Formally,
Sincerity Conformity
—_——
Ui(% My, Mg, Fi, 92’) = ae; — f3 (ei - mi)2 —(1 - 5) Z (mi - mj)Q, (1)
JEF]

where a > 0 and g € (0,1). Total realized utility is the weighted sum of within-the-
platform utility and action utility, which we define as the squared difference of the action

a; to the state of the world:

Action utility
—_——

Ui<ei7mium—iaai7ﬁia‘9iae) = /\ui(ei7miam—ia 19;792) - (1 - >\) (CL,; - 6)2 . (2)

User heterogeneity. Users differ in how they choose e;.

A fraction of users are rational, and choose (m;, e;, a;) to maximize E;[U;].

e The remaining fraction of users are naive, and follow a myopic, addiction-driven
sequential stopping rule: after reading k messages, a naive user 7 reads the next
message with probability g(u;(k — 1,m;,m_;,.%;,0;)), where g : R — [0, 1] is some
continuous and increasing function such that 0 < g < g(x) < g < 1 for some g, g

and all x € R, and exits otherwise.

Platform’s revenues and information. The platform monetizes engagement. Given
an increasing and positive function 7(.), the platform chooses .# to maximize expected

revenue

7 Due to improper priors, ]E[(mZ —6)?| 91-] = (m; — 0;)® + 044, so penalizing deviations from @ or from
f; is equivalent up to an additive constant.



The platform observes user types (perfect personalization), knows ¢(.) and 3, but not ¢
nor {6;}7_ ;. (All results extend if © depends on each user’s type, for example, if there are

different monetization rates for rational and for naive users.)

Timing. The game of communication and learning through personalized feeds described
above consists of the following sequence of events:
1. The platform publicly commits to an algorithm 7.
2. Signals are realized; each user observes 6;.
3. Each user ¢ posts a message m; € R.
4. Rational users choose e;; naive users draw e; from the sequential process above.
Given %, all users choose a;.

5. The state of the world is revealed and payoffs are realized.

Equilibrium. The equilibrium concept is a version of Bayesian-Nash Equilibrium (BNE)
that accounts for the behavior of naive users. A profile of strategies for users and the
platform is an equilibrium if:
 For each naive i, (m;, a;) maximizes E;[U;] given the mechanical process for e; and
correct beliefs about others.
o For each rational j, (m;, e;, a;) maximizes E;[U;] given correct beliefs about others.
» The platform’s algorithm .# maximizes }_; E,[r(e;)] given users’ induced strategies

and the naive users’ engagement process.

2.1 Interpretation of the model

We conclude this section by examining the model’s assumptions.

Improper priors. Users’ prior distribution is uniform along R. This is a tractable way
to capture that users treat their own signal as locally “central”.® Formally, E[0 | 6;] = 6;,
so a user cannot diagnose whether her realization is extreme (Ross et al., 1977; Greene,
2004). We adopt this assumption for tractability. Under normal priors, we can only
determine the users’ optimal linear messaging strategies for naive users, but we cannot

derive an explicit expression for the platform-optimal algorithm.

User heterogeneity and engagement. The empirical evidence (Hoong, 2021; Allcott
et al., 2022) shows that a non-trivial share of users display self-control failures (present-
biased, time inconsistent “keep-scrolling”) on social media, deviating with their choices
from the standard forward-looking benchmark. The engagement process we specify for
naive users is precisely in line with these findings: continuation is addiction-driven and
myopic (increases with instantaneous utility—dopamine kick). The fact that naives’ en-
gagement depends only on instantaneous utility formalizes an extreme present bias: while

scrolling, the user heavily discounts the longer-run benefits of improved beliefs and action

8 For a general discussion of improper priors, see Hartigan (1983).



quality, placing near-zero weight on learning relative to immediate reward (Guriev et al.,
2023). The boundedness 0 < g < g(-) < g < 1 matches the empirical fact that even very

engaging (or very poor) content does not lead to infinite (or zero) sessions.

Perfect personalization. Platforms observe extremely rich traces of user behavior and
can rapidly learn engagement propensities; we assume for this paper that personalization
is perfect and our monopolist platform knows which type the user is.” In practice, large
platforms come close to this benchmark via high-frequency interaction logs, look-alike

modeling, and continuous A/B testing.

Platform’s profits as a function of total engagement. Ads monetize exposure;
more engagement yields more impressions. Modeling revenue as Y, 7w(e;) captures this
directly. Allowing 7 to vary by type (e.g., naive users monetizing differently) leaves the

analysis intact and only rescales the platform’s objective.

3 Truthtelling and the Existence of Echo Chambers

This section establishes our first main result. For any algorithm .# chosen by the platform,
reporting the private signal—truthtelling—is an equilibrium. For rational users, this
equilibrium is unique. For naives, in turn, it is the only equilibrium that arises for any
specification of the engagement function g. We select truthtelling as the equilibrium of
interest and stick to it from now on. As a consequence, once the platform commits to
F, every user i—naive or rational—behaves identically in equilibrium with respect to
messaging: m; = ;. The platform can therefore influence behavior only through the

composition and order of each user’s feed, not through others” messages.

Proposition 3.1 (Truthtelling). For any algorithm %, the profile m! = 0; for alli € U
is a Bayes—Nash equilibrium of the messaging game. Moreover, among rational users,

truthtelling is the unique equilibrium.
Proof. See Appendix A. O

The intuition behind truthful reporting is straightforward. Since users have improper
priors, they lack an external anchor for their beliefs. Conditional on their own signal,

they expect every other user’s signal to coincide with theirs,

E[0; | 6;, 7] = 0;.

9 We assume a monopolist platform with all users aboard: arguably, most social media platforms in
today’s landscape are monopolists of their fields. For example, the Bundeskartellamt (the German
competition protection authority) states in its case against Facebook (B6-22/16, “Facebook”, p. 6):
“The facts that competitors are exiting the market and there is a downward trend in the user-based
market shares of remaining competitors indicate a market tipping process that will result in Facebook
becoming a monopolist.” (Franck and Peitz, 2023). See Garcia and Li (2024) for a discussion of
monopoly platform strategy after market expansion.



This implies that, from user i’s perspective, the platform’s feed cannot shift first-order
beliefs: when others report their signals truthfully, the expected content aligns with 6;.
In equilibrium, therefore, the best reply to everyone else reporting truthfully is to report
truthfully as well.

Proposition A.2 shows that while certain specifications of the continuation rule g
may sustain specific non-truthful equilibria, these depend on particular functional forms.
Truthful reporting, in contrast, is the only equilibrium that holds for any function g
satisfying our assumptions (i.e., continuous and increasing). In this sense, it is robust to
how engagement reacts to within-platform utility. For this reason, we restrict attention
to truthful reporting throughout the analysis: it is the only equilibrium independent of
the exact form of g.

For rational users, the equilibrium is also unique. The first-order condition defining
optimal messages generates a contraction mapping—each user’s best response is a convex
combination of her own signal and the expected reports of others. Iterating these best-
response equations converges to a single fixed point, which coincides with m; = 6; for all «.
Any deviation would require shifting expectations that are, by construction, pinned down
by the user’s own signal. As messages are truthful in equilibrium, the platform affects
user i’s payoffs only through the ordering of posts shown to ¢, i.e., through her feed .%;.

Under perfect personalization, this implies a separability property.

Corollary 3.2. For the platform, mazimizing aggregate expected engagement .7 | E,[e;]

is equivalent to maximizing Eyle;] for each user i separately.

The platform can thus design, for each user type, an algorithm that maximizes that
user’s expected engagement. We denote by &2 the platform-optimal algorithm for naive

users and by P the platform-optimal algorithm for rational users.

3.1 The Platform-Optimal Algorithm for Naive Users

Fix a naive user i. By Proposition 3.1, all messages equal their senders’ signals. After

r—1 messages, user i’s within-platform utility is

Ey[ui(r—1,0;,0_;, 7 ,6,)] =B, |a(r—1) — (1= 8) > (6;—6;)°

je,;’zlr_l

(3

The (expected) probability that ¢ stays to read the r-th message is B, [g(u;(r, 0;, 0, F , 0,))].
Since g is increasing and only the conformity term depends on the identity of the next

user in the feed, the platform chooses, among the not-yet-shown accounts,'’ the j one

10 We use “user” and “account” interchangeably to denote the entities that post messages appearing in
a feed.



minimizing the expected loss from conformity:*!

J € arg max {—]Ep[(ﬁi - 91)2” :

leu\g, !

Iterating this choice yields the platform-optimal ranking & for naive user i:

Pl carg max {— Ep{(gz' - Qjﬂ} )

P2 =2 argje%e;} {— Ep{(ﬁi — Qj)ﬂ} :

(@iei _ <@iei—l U argjeuril;?Fl {_Ep [(07, - 0])2]} : (3)

Proposition 3.3 (Naive Users Get Echo Chambers). In equilibrium, the platform chooses
P as in (3).

Proof. See Appendix A. O

Thus, for each naive user ¢, the feed ranks others in reverse order of expected con-
formity loss with 4. This is a perfect echo chamber in the sense of Pariser (2011). This
might not be that surprising considering that naives’ engagement depends on within-the-

platform utility, and then the platform’s goal is to minimize the loss on conformity.'?

3.1.1 Naive Users’ Optimal Action

Although the feed does not affect messages, it affects actions. Let 3 ;e denote the

restriction of ¥ to the accounts shown to ¢ and 8 ;- the corresponding vector of signals.

Proposition 3.4. For any algorithm F, naive user i’s optimal action after reading e;

messages is

*

-1 t
RN
a. =

Proof. The action a minimizes E[(a; — 6)* | 8 ;<]. The first-order condition yields the

stated conditional expectation; see Lemma A.3. O

11 Because u;(r) = K — (1—8)(6; — 0;)* with K a constant independent of j, the random variables u;(r)
are ordered by first—order stochastic dominance in the expected conformity loss. Since g is increasing,
E,[g(u;)] preserves this order, so maximising E,[g(u;)] is equivalent to minimising E,[(6; — 6,)?].

12 Note that a naive user could, in principle, alter her message to influence engagement and thereby affect
how much she learns. However, truthful reporting remains robust to such behavior: any deviation
would distort the user’s perceived similarity with others without improving expected utility.



3.2 The Platform-Optimal Algorithm for Rational Users

To show that echo chambers are not merely an artifact of the engagement process, we
also consider a simplified population of rational users with two types (e.g., democrats and
republicans) whose engagement depends on learning; even in this case, the platform may
prefer to place same-type users first in a user’s feed.

In equilibrium, a rational the user chooses an engagement level e} that maximizes her

expected utility given the algorithm .#,

e; € arg max E{Ui(euei,e—z‘,ﬁ)

eﬂ] .

Because the feed induced by the algorithm is ordered, scrolling further exposes the user
to increasingly diverse content but also incurs higher disutility from disagreement. For
large A (low value of learning), the user stops early, consuming only same-type mes-
sages. When ) is small, the informational gain from reaching later, opposite-type content
outweighs the discomfort cost, leading to a strictly positive interior optimum e > 1.
In equilibrium, the platform exploits this forward-looking behavior by clustering simi-
lar messages at the top of the feed to keep the user engaged until she reaches the more
informative, cross-cutting content that maximizes her overall expected utility.

Formally, the platform’s problem is to select a feed that implements the highest possi-
ble engagement. Let }(.7;) € arg max,,en E[U;(m; .%;)] be rational user j's best-response

engagement under feed .#;, and define the set of implementable engagement levels
K; = {k: € N : 3.7 such that e;(F;) = k‘}

Proposition 3.5 (Platform-optimal algorithm for rationals). For each rational user j,

the platform chooses a feed ﬁjk* that implements
k* € argmax k,
kEKj

i.e., the largest engagement level that can be induced by some algorithm.

Proof. Fix any k € K; and one implementing feed 3";“. Since the platform’s expected
payoft B, [m(k)] is strictly increasing in k, it selects a feed attaining the largest element of

K. By best response, E[U;(k*; #}")] > E[U;(k; #}")] for all k € N. mi

Characterizing the platform-optimal algorithm for rational users, PP, in full generality
is infeasible, as it requires closed forms for posterior variances under arbitrary correlation
matrices. To isolate the core force, we analyze a two-bloc environment composed by
democrats (D) and republicans (R) that captures the same tradeoff. Consider a focal
democrat user j. Other users are either same-type (D) with correlation p;, = x € (0,1)

or opposite-type (R) with p;; = —x. Assume « is small enough so that each additional

10



message creates a conformity cost even when types coincide.'?

A (finite) feed is an ordered list F = (ji,...,Jn); its prefix of length k is F* =
(J1,---5Jk), with 7 < n. Let d(#,k) and r(.Z,k) denote the numbers of same-type
(D) and opposite-type (R) accounts in .Z*, respectively (so d + 7 = k). We will have
d(.#,1) = 1 because the first user in the feed is the user herself, a democrat. The
user’s expected utility after reading k messages depends on counts (of republicans and

democrats), not on order:
U(F k) = U(d,r) = Ma(d +7) — (1 8)(d(1-2) +r(1 +x))} — (1= A) Var[g|d, r]. (4)

The posterior variance under the two-bloc structure is order-irrelevant and has the closed

form
L —2) (1+2(d+7-1))
(1—2z)(d+7r)+4dxdr (5)

The platform evaluates an algorithm .# by the engagement it implements, denoted

Varld | d,r] = o

by e*(%#) = argmax; U(.%, k) (largest maximizer). Among all algorithms, the platform
chooses P € argmaxg e*(F). For reference, the user optimal algorithm is denoted by
FYU € argmaxz U(F,e*(F)). Given a pair (d,r), we can compare the utility induced
by adding a democrat to the pool (abusing notation, U(d + 1,7)) to the utility induced
by adding a republican (U(d,r + 1)):

U(d+1,7) = U(d,r+ 1) = 2\(1 = B)z — (1 = \)(Var[d,r + 1] = Var[d + 1,7]).
Moreover,

Var[f | d,r+1] — Var[0 | d+1,7] =

) 40%2(1 = z)(d — ) (1 + z(d + 7)) (6)

(4xdr—dm+d+3m+r—x+1)(4xdr+3dm+d—m+r—x+1)'

In particular, the learning gain from the marginal opposite-type signal is (weakly)
larger when the user currently observes more same-type signals: if d > r then Var[0|(d, r+
1)] = Var[f|(d + 1,7)] > 0, while it is zero at d = r and negative if d < r.

The user-optimal algorithm, denoted by .#Y, satisfies two key properties. First, it
is order independent: given ZUV, the engagement level e (V) maximizes the user’s
expected utility not only relative to other possible algorithms, but also relative to any
reordering of the same content. In other words, once the set of messages in Y (e})
is fixed, their order does not affect the user’s utility. Second, .#Y contains a higher
proportion of same-type than opposite-type accounts. Because the optimal learning

profile combines exposure to both types, with the proportion of democrat and republican

13 This assumption only simplifies the exposition and does not affect the comparative statics emphasized
below.
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messages satisfying r € [d — 1,d + 1], the algorithm that maximizes learning balances
confirmation and diversity. In the limiting case where the user cares only about learning
(A = 0), this balanced composition is precisely the user—optimal algorithm. As there is
an extra cost associated with an opposing view signal, this tilts the balance towards more
democrats than republicans in the feed. All the following results are stated for a democrat

user; the republican version is similar.

Proposition 3.6 (Echo chambers arise even for rational users). Given an algorithm F
and a level of engagement e*(F), let us assume that the number of republicans in a demo-
crat user feed is larger than the number of democrats, i.e., r(F,e*(F)) > d(F,e*(F)).
Then, the platform can weakly increase engagement by choosing an algorithm F' showing

more democrats than republicans in the democrat feed.

Proof. Suppose, for contradiction, that .# is platform-optimal with r(.#, e* (%)) > d(F#, e*(F)).
Since the focal user is a democrat, there exists k < e*(.%) with d(Z#, k) = r(Z,k); let

knr be the largest such k. Construct .’ by keeping the first kj; positions identical to .%#

and flipping each label thereafter.

For any ¢t < kj, the prefixes are identical, so U(Z',t) = U(.Z,t). For t > kyy,
write (dy, ;) for the counts under .# in the first ¢ positions. By construction, the counts
under .’ are (ry,d;) (because the increments after ky, are swapped). Using Var([f|d, r| =
Var[f|r, d] and

dl—x)+r(l+z)=(d+7r)+z(r—d),

we have

U(F' 1) — U(F,t) =201 — Bz (r, — dy) >0,

since r; > d; for all t € {ky + 1,...,e*(%)} by the choice of kjs and the assumption
r(F,e"(F)) > d(F,e*(F)). Hence U(F',t) > U(F,t) for all t, with equality up to ky;.
Therefore max, U(F',t) > max, U(Z,t) and e*(F') > e*(.F). O

Even when users are rational, personalization brings into their feeds less diversity than
they would randomly get in their neighborhood. Moreover, platform-optimal algorithms
for rationals are front-loaded with same-type users. Thus, not only naive users receive

echo chambers as their feed.

Proposition 3.7 (Front-loading for rationals). Fiz user j and let F* be the set of feeds
that maximize ;. Then there exists #F € F} and some k € {1,...,¢e;} such that the first

k positions of F* are democrats and the next e; — k are republicans.
Proof. See the proof in the Appendix A O

The platform exploits the user’s willingness to learn by front-loading low-conformity-
cost, same-type content to keep the user engaged until the more informative opposite-type
signals arrive. Because the learning benefit of an opposite-type signal is increasing in the

stock of same-type signals (Equation (6)), a front-loaded feed can implement strictly
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higher engagement than a balanced or alternating one. When learning matters more
(small \), the platform can tilt the implemented prefix further toward same-type content.
Conversely, if willingness to learn is low (large \), engagement is scarce and multiple
platform-optimal algorithms may exist, including ones that feature less pronounced front-

loading.

4 The Effects of Personalization on Learning

In this section, we evaluate how the platform-optimal algorithm affects learning both
for naives and for rationals, i.e., how information acquired on the platform improves
decision quality. First of all, let us assume homogeneous signal variances for tractability:
04 = 0j; = o for all i, j € U. Now, we define learning as the reduction in the expected
squared error of the optimal action after reading messages. When user ¢ chooses her

optimal action after e; messages, the expected loss equals the posterior variance:
2
B[(a; —0)* | 65-] = E{(E[@ 16,4]—6)" | oyiei} — Var[0] 0,5] .

By Lemma A.3, this posterior variance admits the closed form

1

Var|0| 0| = RETE
FC

(7)

which allows us to compute learning for any algorithm and any (U,3). In particular,
Var[f | 6 ;<] < 02, so reading a feed weakly improves decision quality.

Under Zthe platform-optimal algorithm for naives, the feed is ordered by similarity
to minimize conformity losses. This ordering (weakly) raises engagement relative to the
user—optimal ordering by front-loading like-minded content. Two forces determine learn-
ing. First, a higher engagement level &k delivers more signals, which—holding composition
and correlations fixed—reduces the posterior variance. Second, the way the platform
raises k is by increasing similarity within the prefix, which lowers signal diversity and
might dampen information. The net effect on learning for naives is therefore a priori am-
biguous. These forces depend critically on the platform’s selection set. With a small pool
of available accounts (and a given X)), the platform’s ability to shape both engagement
and the composition of any prefix is limited. As the platform becomes large, the feed can
be engineered more flexibly at each depth, and the dependence of learning on the specific
covariance structure weakens. In the next subsection we formalize this “large platform”
regime, but, before, let us analyze learning for rational users when platform size is fixed.

For rational users, platform and user objectives need not be aligned in terms of learn-
ing. By designing a sequence that induces a larger best-response engagement k—for
instance, front-loading lower-cost same-type content so that the user keeps scrolling until
opposite-type signals arrive—the platform can push the user beyond her stopping rule

under .ZY. When learning is sufficiently valuable (small \) and processing costs for dis-
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sonant content are moderate, the additional exposure to opposite signals strictly reduces
the posterior variance, potentially yielding higher learning than under .#Y. Intuitively,
the marginal informational value of an opposite signal is largest when such signals are
scarce in the user’s history; by increasing k, the platform ensures enough disagreement to

improve learning overall.

4.1 The Effects on Learning in Large Platforms

Motivated by the recent growth of social media usage,'* we study learning as platform
size grows. We show that, for naive users, learning vanishes in the limit. The mechanism
is the echo chamber: as the selection set expands, the platform fills the user’s finite
implemented prefix with close copies of the focal user, so additional messages convey
little extra information about €. This contrasts sharply with classical wisdom-of-the-
crowd results, highlighting the platform’s strategic role in information design.

We define the expansion protocol as follows. Starting from a given user base U, we
add entrants whose covariances with incumbents are drawn from a continuous, symmetric
distribution centered at zero with support on [—0?, 0%]. The resulting covariance matrix 3
is symmetric and positive definite, ensuring a well-defined correlation structure across
users. To formalize this argument, we assume that the pairwise correlations p;;, j # 4, are
independent and identically distributed draws from a continuous distribution F' on [—1, 1]
with strictly positive density f(z) > 0 for all z € [—1, 1].

4.1.1 Learning for Naives in Large Platforms

As platform size increases, the platform-optimal algorithm &2 selects the most similar
neighbors to maximize naive engagement. The expected implemented length is never-
theless finite: because g(-) € (0,1), continuation is never guaranteed and the probability
of an infinite reading path is zero. The following lemma formalizes bounded expected

engagement.

Lemma 4.1. There exist well-defined ky;, ky, € N such that Eyle;] < ky; and Bile;] < k.
In particular, there exists k, with E,le;] <k, for alli e U.

Proof. See Appendix A. O

Bounded implemented length implies that, as the platform grows, the naive user’s
observed prefix under .% contains ever more highly correlated accounts. Consequently,

diversity collapses within the prefix and learning disappears asymptotically.

Proposition 4.2. Under the platform-optimal algorithm F, user i’s learning becomes
negligible as n — oco:
plim Var[@ | 005;_62':| = o’

n—oo

14 See, for example, the number of social media users from 2011 to 2028 (forecasted): https://wuw.
statista.com/statistics/278414/number-of-worldwide-social-network-users/.
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Proof. See Appendix A. O

This result is in stark contrast with classic environments where the wisdom of the
crowd enhances learning as the population grows. Here, the platform’s strategic feed
design undermines diversity, creating the echo chambers and filter bubbles emphasized
by Pariser (2011). The policy relevance is immediate. For instance, the DSA’s require-
ment that platforms offer a non-profiling ranking has led to the reinstatement of reverse-

chronological feeds. Section 5 analyzes such alternatives relative to personalization.

4.1.2 Learning for Rational Users in Large Platforms

In contrast to naives, rational users need not experience vanishing learning as the platform
expands. Consider the expansion protocol above. For each entrant ¢, if the correlation
pje is sufficiently high so that the within-the-platform benefit (scaled by «) outweighs
conformity costs, including ¢ at the front of the feed weakly increases user j’s expected
utility while strictly reducing her posterior variance. Because the platform maximizes
engagement, it will front-load all such nonnegative-marginal entrants; the rational user
then reads them along the equilibrium path. Hence, as the set of utility-improving entrants
grows with platform size, the rational user’s posterior variance weakly decreases. In this
sense, a large platform can generate a within-platform wisdom-of-the-crowd effect for

rational users who can learn without incurring net conformity costs.

5 The reverse-chronological algorithm and other al-

ternatives

This section evaluates ranking rules that can replace or modify the engagement-maximizing
algorithms studied above. We consider two families that are especially salient in current
debates. The first is the reverse-chronological algorithm, the canonical “non-profiling”
option contemplated by the DSA. The second is a class of minimal corrective modifi-
cations to the platform-optimal algorithms that reintroduce diversity in exposure while
preserving most of their engagement properties.

To build intuition for the subsequent results, we analyze in more detail how Var [9 | 95;}
depends on the covariance structure 3. Recall that with homogeneous signal variances
(0 = 0j; for all 7, j), the posterior variance after reading a prefix .#;* admits the closed

form
1

Var[é’ | 032] ={s-L ¢’
Fl

(8)

(see Equation (7)). Let X = X! be the precision matrix. The partial correlation be-

tween 6; and 0, conditional on all other signals equals —\/% Hence, the informational
i L5

value of adding user j to ¢’s feed depends not only on the pairwise covariance o;;, but

also on the pattern of conditional relationships among all accounts already in the prefix.
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Differentiating Var = (1"X5'1)~! with respect to an off-diagonal covariance o;; yields

2
0 1
o 0100 (5 (52oe) ()

so the effect of bringing in a more correlated user j is generally non-monotone: it increases

variance when the precision row-sums s; = >, x;¢ and s; = >, x;, have the same sign, and
decreases it when they have opposite signs. This non-monotonicity explains why, even
though random exposure, and thus an increase in diversity, the effect on learning need
not always be positive.

The phenomenon is illustrated in the next example. Consider a small network of
four individuals (n = 4), and assume that e; = 3 and that the distribution of signals,

conditional on 0, is

0, 1 08 0.7 0.5
0 0.8 1 03 0.6
|l ~NO, ==

0 0.7 03 1 04
0, 05 06 04 1

Define two possible feeds for user 1: Z{" = {1,2,3}, which includes the most corre-
lated users, and %" = {1, 3,4}, which features less correlated ones. The corresponding
posterior variances are Var[f | %] = 0.58 and Var[0 | .Z;'] = 0.68. Somewhat counterin-
tuitively, .#;"—the more correlated feed—yields better learning. This illustrates that the
covariance between user 1 and each of her peers is not the sole determinant of learning:
the conditional dependencies among all users within the feed also shape the amount of

information the user can extract.

5.1 Reverse-chronological (random) algorithm

Before the adoption of personalized feeds, most social media platforms displayed posts
strictly in the order they were written, with the most recent appearing first. In the model,
this corresponds to an algorithm that draws the next message uniformly at random from
the remaining accounts, the reverse-chronological algorithm, denoted #. Under %, the
next post is drawn uniformly from the remaining accounts. Conditional on U \ {i},
each neighbor j is equally likely to appear at any depth; the order is independent of
the covariance structure. Unlike &2 or P, #Z neither amplifies homophily nor minimizes
disagreement in early positions. Its salient property is that it restores exposure diversity.

Diversity improves learning in large platforms. With homogeneous signal variances

and a fixed implemented length e;, a law-of-large-numbers argument implies

E{plimVar{@ | ,%’fH = gQE{l'

n—00 i

4|, §)
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and in the large-population limit plim,,_,

Varld | Zf] = ‘;—j Thus, conditional on
reading e; posts, Z eventually delivers the classical wisdom-of-crowds benchmark. The
cost is within-platform utility: random early exposure includes dissimilar posts precisely
when continuation is most fragile, lowering engagement and platform revenue.

For naive users, Z trades off learning gains from diversity against reduced gratification
and higher disagreement costs in the early prefix. The next result compares & and Z# in

large platforms (under the expansion protocol introduced above).

Proposition 5.1 (Naive users: & versus Z). Given the covariance structure ¥ and for a
large platform size, the platform—optimal algorithm &2 outperforms the reverse—chronological

algorithm Z in expected utility if and only if

)\>max{ 15, | ] }

€ | % (Ele; | &) —Ele; | Z)) +2(1 — B)E[e; — 1 | Z] +(1 _E[el | ‘@D

Proof. See Appendix A. O

Because e; > 1 and & maximizes expected engagement, there is always some A € (0, 1)
for which & dominates #; in many configurations, & wins for most A (see Figure 77).
Intuitively, the learning edge of Z materializes only when users scroll sufficiently long; but
random early disagreement lowers continuation, so naives consume fewer posts precisely
when diversity would pay off.

Let us now characterize rational users’ behavior under the reverse-chronological algo-
rithm. Since the ranking imposed by # draws the next message uniformly at random
from the remaining accounts, the rational user’s decision at any depth k& reduces to a
standard optimal stopping problem: whether to continue reading one more randomly
selected post or to stop and act based on the information already acquired. The user
weighs the expected instantaneous benefit of continuing against the expected conformity
cost generated by disagreement with the next, randomly drawn message. The following

proposition formalizes this condition.

Proposition 5.2 (Rational users optimal behavior under #Z). Consider a rational user
at depth k who has already read the set of messages ZF. Then it is optimal to continue
to k+1 if and only if

Na + (1—A)02(var<9|gff)—E[var(e|,@f+l)D > mE[@—@)?\,@ﬂ,

where the expectations are taken over the next random user j among the n—k—1 accounts

that have not yet appeared in the user’s feed.
Proof. See proof in Appendix A O

The takeaway here is that the reverse-chronological benchmark restores exposure diver-

sity and attains crowd-wisdom asymptotically for a fixed e;, but it sacrifices within-platform
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utility and (for naives) implemented length. In practice, we have that % will rarely dom-
inate engagement-optimal designs in overall welfare. This motivates hybrid designs that

combine diversity with the continuation benefits of targeted similarity.

5.2 A minimal corrective: the breaking-echo-chambers algo-

rithm

Several platforms have experimented with tools that surface corrective or contextual con-
tent (e.g., community notes, sponsored public-interest messages). We capture this idea
with a minimal modification of the platform-optimal algorithm: the breaking-echo-chambers
algorithm 8 inserts at the very top the account most negatively correlated with the focal

user and then follows the platform-optimal order. Formally, for every i € U,

H;(1) € arg min_p,;, Bi(k) = Pi(k —1) for k> 2.
jeu\{i}t
In large platforms, the top insertion can be made nearly maximally opposite at the
expense of a small conformity cost, while it sharply reduces posterior variance. The
engagement effect is a small reduction in the probability of continuing from the first

position. The net welfare comparison for naives is summarized next.

Proposition 5.3 (Naives’ welfare comparison & vs B). When platform size grows large,
the above defined breaking-echo-chambers algorithm outperforms the platform-optimal al-

gorithm & for user i if and only if

1

h = 1+;§<E[ei | 9]—E[ei|,%)])'

Proof. See Appendix A. O

Thus, when users place sufficient weight on learning (small \), the informational gain
from a single early opposite post more than compensates for the small engagement loss
relative to &2. In finite platforms the comparison is ambiguous: if a strongly opposite
account exists, # delivers sizable learning improvements at modest conformity and en-
gagement costs; otherwise &2 remains preferable.

For rational users, Z# typically brings limited benefits. Under P the platform already
implements a balanced path by front-loading low-cost sameness to secure continuation
and delivering cross-cutting content later; adding an opposite post at the top mainly
lowers early gratification and may shorten engagement without providing commensurate

learning gains.
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5.3 Policy discussion

The DSA requires very large online platforms to offer a non-profiling algorithm. In prac-
tice, platforms satisfied this by (re)introducing reverse-chronological algorithms. In our
framework, this corresponds to Z. Its effects are clear. As we have shown, on the one
hand, Z restores exposure diversity and, for any fixed implemented length, converges to
the classical learning benchmark. On the other, early random disagreement lowers within-
the-platform utility, shortens engagement for naive users, and typically yields lower wel-
fare than engagement-optimal algorithms that time diversity. This mirrors the evidence
that personalization was built to maximize engagement—and has succeeded (Guess et al.,
2023): the platform-optimal & is tuned to deliver immediate gratification.

Hence Z is unlikely to outperform & in practice. Rational users face a sharp trade-
off: random exposure does not guarantee higher learning along the realized path and
imposes conformity costs when continuation is most fragile. The reverse-chronological
algorithm &% thus fulfills the letter of the DSA while falling short as a welfare substitute
for personalization.

Platforms have also tried corrective designs. Twitter (now X) introduced Birdwatch
(Community Notes) in January 2021 to crowd-source context. In our model, the breaking-
echo-chambers tweak % captures this logic: inserting a maximally opposite post on top of
the closest-first feed restores near first-best learning in large platforms at a small confor-
mity cost (coming only from one user), while preserving the rest of &2. Implementation is
the hurdle: it needs enforcement or platform cooperation, and users may ignore inserted
opposite content.

Taken together, #Z and % do not fully resolve the engagement-learning tension. This
motivates the market—design approach pursued next: under horizontal interoperability,
network effects are shared and platforms compete on ranking quality; under some condi-
tions, the utilitarian-optimal algorithm %/ becomes the implemented option by competing

platforms.

6 Network Effects

This section analyzes how personalization interacts with network effects—how a larger
user base amplifies engagement, reshapes exposure diversity and learning, and alters mar-
ket structure and policy levers such as entry and interoperability. We say that user ¢
experiences network effects under algorithm % if her expected utility weakly increases
with platform size: E;[U; | n+1,.% (n+1)] > E;[U; | n, % (n)]. For clarity, we write .Z (n)
for the algorithm applied on a platform of size n, and e;(n) for the engagement induced

for user ¢ under .% (n).

Proposition 6.1 (Network effects need not hold for naives). Fiz a naive user i. Under
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the platform-optimal algorithm &2 define

Ae; = E-ei(n—i-l) —e;(n)

AC; :=E Z (6; — 9j)2 - Z (0; — ej)z

Lje 25 (n41) e ™ (n)

AV, = E:Var(ﬁ ‘ 0y(n+1)) — VCW’(9 ‘ 03”(71))

0, ()]

Hi, Qz(n) s

0, y(n)} .
Whenever o Ae; — (1 — ) AC; + AV; # 0, the platform-optimal algorithm & features
network effects for naive user v if and only if

AV;
ale; — (1 —B)AC; + AV,

If either a Ae; — (1 — B) AC; + AV; = 0 or learning improves with platform size (i.e.,
AV; <0), then & features network effects for naive user i for every X € (0,1).

Proof. See Appendix A. O

Proposition 6.2 (Rational users always enjoy network effects). Under the platform-

optimal algorithm P, rational users always enjoy network effects.
Proof. See Appendix A. O

The propositions formalize a sharp contrast. Personalization enlarges the platform’s
selection set and permits finer matching in the feed. For rational users, who internalize
both conformity and learning when deciding how far to scroll, this translates into higher
expected utility as n grows: the platform can front-load low-cost similar content while
still implementing enough exposure to disagreement to sustain learning. By contrast,
for naive users the platform over-exploits homophily: as n rises, the implemented feed
becomes increasingly populated with close copies of the focal user, which raises conformity
and lowers the informational value of each additional message. When the naive user places
any weight on learning (A > 0), the sign and magnitude of AV; become pivotal; beyond
a size threshold the learning loss can dominate, so expected utility can fall with n even if
engagement rises.

This aligns with the evidence from Guess et al. (2023), which shows that switching
users from Facebook’s personalized feed to a chronological (non-personalized) feed sig-
nificantly reduces engagement but also exposes users to more diverse content, mitigating
echo chambers. This might be happening in X and other social media platforms (Kitchens
et al., 2020; Gauthier et al., 2025). These patterns suggest that naive users on highly per-
sonalized platforms may not realize the extent of the algorithm’s filter bubble, continuing
to engage more while actually seeing less variety in viewpoints. Such evidence underscores
our model’s implication that personalization, when taken to extremes, can erode the very

network benefits that attracted users in the first place.

20



6.1 Network effects, competition, and personalization algorithms

Although our model does not endogenize platform competition, the network—effect re-
sults speak directly to current policy debates. Two observations are central. First, the
presence of naive users challenges the conventional view that larger platforms unambigu-
ously benefit participants in digital markets. For such users, stronger personalization may
raise engagement while eroding learning, so scale can reduce welfare. This suggests that
improving contestability in social-media markets may require tools beyond the standard
repertoire (Banchio et al., 2025). Second, when user behavior does generate platform-
specific network effects, the familiar winner-takes-most logic applies: large incumbents
enjoy advantages that are difficult for entrants to overturn.

A leading proposal to address these frictions is horizontal interoperability—the ability
of distinct platforms to interconnect so that users from one can interact with users from
the other and vice versa(Kades and Scott Morton, 2020). Interoperability makes network
effects no longer platform-specific, but shared across the whole market. Competition then
shifts from for the market to within the market (Belleflamme and Peitz, 2020). This
is standard in other communication layers (e.g., telephony and email), where users can
communicate across providers without switching accounts.'®

The EU’s DMA is a first step in this direction. Article 7 mandates interoperability
for number-independent interpersonal communication (messaging) services provided by
gatekeepers. While some authors are skeptical about the magnitude of the resulting com-
petitive gains in messaging (Bourreau and Kraemer, 2023; Bourreau et al., 2023; Dhakar
and Yan, 2024), social media differs in a critical respect: personalization algorithms are
the key competitive dimension once network effects are shared. In that environment,
interoperability weakens lock-in and redirects rivalry toward the quality of feed design.
Our results imply that such a shift would particularly benefit naive users: with interop-
erability, platforms cannot rely on captive scale and must compete on algorithms that
balance engagement with learning. Rather than prescribing a specific ranking rule, inter-
operability harnesses competitive pressure to discipline engagement-maximizing designs

that would otherwise entrench echo chambers.

7 Conclusion

This paper develops a tractable model of communication and learning through person-
alized feeds to study how an engagement-maximizing platform arranges exposure and
how that arrangement feeds back into behavior. Two simple primitives—truthful mes-
saging and correlated signals—deliver sharp implications. First, truthtelling is the ro-
bust equilibrium of the messaging game, so platforms exercise power solely through

the composition and order of exposure. Second, the engagement-optimal ranking is

15 For example, a Yahoo user can seamlessly send an email to a Gmail user, and vice versa.
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homophily-preserving: naives receive closest-first feeds (a perfect echo chamber), and
rationals receive front-loaded sameness that sustains continuation until cross-cutting con-
tent arrives. In large platforms the naive learning benefit of additional scrolling vanishes,
breaking the classical wisdom-of-the-crowds logic; rational users, by contrast, continue to
enjoy network effects.

These positive results organize the welfare comparison among realistic ranking regimes.
A reverse-chronological (non-profiling) feed restores exposure diversity and achieves the
crowd-wisdom variance benchmark for a fixed length, but it reduces within-platform util-
ity when early disagreement is most costly and hence curtails naive engagement. A min-
imal corrective—the insertion of a single opposite-type post at the top of a closest-first
feed—creates a clean trade-off: it raises early disagreement (and may shorten engagement)
but sharply lowers posterior variance; when users place sufficient weight on learning, the
corrective dominates in expected utility. In short, timing of diversity matters as much as
its level.

With respect to policy analysis, non-profiling defaults are a natural baseline but are
not a panacea: absent additional design features, they underperform engagement-optimal
personalization when users heavily value within-platform experience and rarely deliver
first-best learning along realized paths. Corrective insertions or contextualization tools
can move outcomes toward the utilitarian benchmark at modest engagement cost, espe-
cially on large platforms with rich selection sets. More broadly, competition policy that
shares network effects—horizontal interoperability—redirects rivalry toward algorithmic
quality, disciplining pure engagement maximization and aligning platform incentives with
user welfare.

Two modeling choices invite further work. First, improper priors yield the clean
truthtelling benchmark and closed-form posteriors. However, with normal (proper) pri-
ors, messaging and ordering would interact, potentially strengthening echo-chamber forces
through both content and speech. Second, our within-the-platform utility formulation
captures simple conformity motives. However, incorporating richer attention dynamics
(e.g., U-shaped engagement in similarity) and heterogeneous conformity costs would let
feeds exploit both outrage and affinity. Finally, endogenizing platform competition un-
der interoperability would quantify how much algorithmic discipline can be achieved by
market design rather than direct ranking mandates (but this is already being studied in
Banchio et al. (2025)).

Taken together, our results show that when platforms optimize for engagement, echo
chambers are not an accident—they are the optimal instrument. Restoring learning there-
fore requires either changing the instrument (altering algorithms to time in disagreement,
which matters especially for naives) or changing the game (making platforms compete on

algorithms rather than on captive network scale).
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A Omitted proofs

Lemma A.1 (Variance of §; given ;). Let
9i:9+€i, ej:9+5j7

where (g;,¢;) is bivariate normal with variances o;;,0;; and correlation o;;. Assume im-
proper prior for 6. Then,
0 | 0; NN(@» Uii)a

and
Qj | 91 ~ N(Ql, Oii + O'jj — 20‘2-3').
Proof. By Bayes with an improper prior, f(0 | 6;) < f(0; | 0), as 0; | 0 ~ N(0, 04),

Then, using conditional probability,

(0, 65]6)
J(050:,0) = ————,
e T
which gives a standard result from multivariate normal:
o' ..
010,60 ~ N (9 + pij | (0 = 0), 05;(1 — P?;-)) : (2)
where p;; = \/;’:70“ Fix #; and write the joint conditional density

Up to a normalizing constant, the exponent is

2 (1 — P?j) Oii

%5j 2
1 [((9]- —0— pij%(ei — 9)) N (6 — 9@)2} .

The term inside the parentheses is

755 2 755 i
(6; 0 — p ‘/\/;ii(ei —0)) =(0;- 07— 2,01']'%(@ —0)(0; — 0) + pi; 720, — 0)*.

Using this, the exponent becomes

— 1 [(QJ — ‘9)2 _ 2pij (9] _ 9)(92 . 9) + (91 — 9)2

=) | o Voo z

Expand the squares
(0;—0)* = 07—20,0+6>, (0,—0)* =07 —20,0+6°, (0,—0)(0;—0) = 0,0;—0,;0—0;0+06".
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Collect the terms that depend on 6:

—i [Ae)? —239} — ;0

To simplify notation, we will define

1 11 20;
A:2<+_m>,
L=pi5 \0jj  0i  /0j;0i
1 (6, 6
B = 2<]+— P (0j+02-)>,
L=pi; \oj;  0u  /05;0ii

2
C= 12<9j—2p“€j6i+63>.
L=pjy \oj; /0530 0

Integrate out 0 using

/Rexp (—;[AHZ_QBHD df = ﬁ exp (iﬁj)

Therefore the marginal in 6; given 6¢; is proportional to

A direct simplification yields

B (0; — 0:)°

A oyt 0j = 2pij \[0u0g;

Hence
0; | 0; NN(9i7 Oii + 045 — 2pij \/m) ;

so the conditional variance is o;; + 0j; — 2p;5 /04055, or equivalently o + 0;; — 205;.

Proof of Proposition 3.1

Proof. The next proof will be divided into two parts. First, we will show that, for rationals,
truth-telling is the unique equilibrium. Second, we will show that, for any specification

of the function g, truth-telling is also an equilibrium for naives.

Rationals. User ¢, a rational user, chooses a message m; € R to maximize her within-
the-platform expected utility given her private signal #; and the algorithm .%; that is,

E[Uz | ei,y] = )\(OéE[ei ’ ei,g] - 5(91 - mi>2 - (1 - B)E{ Z (mi - mj(ej»z

. €;
JEF,?
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Because e; is chosen later in the game, unlike for naive users we need not analyze the
effect of m; on expected engagement. With the algorithm and the engagement level fixed,
the choice of m; does not affect learning.

Thus the optimal m; maximizes

—B(6; —m;)? — (1 —p) (eim§+E[ > my(6;)° ei,gz} — 2miE{ > my(6;) ’ Qi,ﬁb,

. €, . €,
JEF? JEF?

The first-order condition with respect to m; is

(8 (1= Beymi = 36+ (1= BB 3 my(0)) | 6.7 (10)

. e,
JEF, "

This already shows that truth-telling is an equilibrium; if every other user chooses
truthtelling, user ¢ best replies with truthtelling. We now prove uniqueness for rational

users. For any user ¢, define
Dg Z:B—i—(l—ﬁ)eg.

Because the first-order condition holds for every user, substitute each neighbor’s best
reply into user i’s best reply and iterate this substitution for neighbors of neighbors up
to depth m:

m; = gei + SzﬁEzLZ (gﬂj + 15515][ Z‘mz(ez)D]

1

R NP IO Ny

jegfi I jeFs I i
1-— 1—
+ L] » ls[ 5 S0R] S me)]]] +
D; z¢i J e D el
€F,; leﬁjj q€F,
m—1
1-— 11—
— oy e[y 0y Sy g
D, r=1 Z Di 7=, Dj E Dj,
NISEZ j2€5‘}-fl jre,?j Jr—1
r—1
1-p 1-p 1-p
YB| X Y 5 )3 B, X m@)|]
]169 ' ‘7269\;1]1 n jmegjj”izl e pegjrjnm

By improper priors and the law of iterated expectations,

E[Zej

. 5 €;
JEF?

02,9:| = 6161

Applying this identity to the first inner term in (11) replaces each #; with 6; inside the
conditional expectation. Repeating the same step at each subsequent level shows that the
depth-r contribution is a nonnegative multiple of 6;.

Lets first show that the third term converges to zero. For this term, each additional
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nesting contributes a factor
1-5 1-p
D, B+ (1—PBe

and the adjacent sum has at most e, terms. Hence the depth-¢ layer scales the upstream

magnitude by

(1—B)es
G B =
Let
Ymax 1= MAX m <1 (finite since e, < n).
—pP)es

From the quadratic loss, admissible strategies satisfy E;[m;(6;)?] < oo; if reading a mes-
sage produces an expected disutility larger than the utility that the user can receive in
isolation (e; = 1), then the user will not read that message. By Cauchy—Schwarz there is
a finite constant
K :=sup EZ“m](GJ)” < 00.
JeUu

Conditional expectations do not increase L! norms, so the absolute value of the nested
remainder after m layers is bounded by v K — 0 as m — oo. Since the third term

vanishes, (11) reduces to the fixed-point form

5&+1_6

. e,
JEF, "

Define the iteration

e+ B 1-p (r)
mi — Eez + DZ E|: ‘ZE. m]
JEF?

91',32.], m(o) =0.

The map T;(m) := D%Hi + IBZ@E[ZJ m; | 0;, ] is a contraction in the sup norm with

modulus

(1—Be . _ﬁ
Gr(-pe b <t

so m — m* as r — oo, and m* is the unique fixed point. To identify m*, plug any
fixed point into (10) and subtract the identity (8 + (1 — 8)e;)0; = B0; 4+ (1 — B)E;[>; 0; |
0;, 7] = B0; + (1 — PB)e;0; (by improper priors):

(B+ (1= B)es)(m; —60:;) = (1 —5)15[ > (m;—05) ’ ei,y}

Taking absolute values and then the maximum over ¢ gives

(1—0)ei
B+ (1= Be;

M, — Oelloe < mzax M7 — Ozl co-
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The factor on the right is strictly less than 1, hence ||m} — 6,]« = 0 and

Therefore, truthful reporting is the unique equilibrium for rational users.

Naive users The proof for naive users proceeds in three steps. First, we show that
the message that maximizes engagement also maximizes learning. Second, we establish
that the message maximizing within—platform utility coincides with the one that maxi-
mizes expected engagement. Third, we demonstrate that truthful reporting maximizes
within—platform utility. Step 2 provides the bridge between the two optimisation prob-
lems: it links the utility-maximisation argument in Step 3 to engagement (and, via Step
1, to learning), ensuring that truthtelling simultaneously maximises all three objectives.

First, notice that a naive user that only cares about learning wants to choose a message
that maximizes engagement For naive users, engagement and learning are monotonically
related. Given any algorithm and message profile, if a user reads weakly more posts (i.e.
e > e;), her learning weakly improves (posterior variance weakly decreases). Hence, for
naive users, choosing m; to maximize engagement also maximizes learning under any feed.
This follows directly from Bayesian updating: conditional on the feed, a larger number of
signals implies a weakly lower posterior variance.

Next, we show that the message that maximizes the expected within—platform utility,
E [ui(mgm_s, es, Fi, 0;) | Fi, 0],

when m; = 6;, also maximizes the expected engagement. By definition (finite support),

the expected engagement is'®
k=1

With the continuation function g(-), for 1 <k <n—1,
k-1
Pr(e; = k | mi, 05, ;) = (1= g(ui(mi, k) T] g(ui(mai, 7)),

r=1

and the probability of reaching the cap n is

n—1
Pr(ei =n | mlaelaﬁ) = H g(ul(mzar))
r=1

Therefore,

16 We write u;(m;, k) for the utility when user ¢ sends m; and reads up to k posts of the algorithm.
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Here Ey ,[-] integrates over the unknown messages (via #_;) while holding the en-
gagement realization fixed, in contrast to E;[-], which averages over both 6_; and e;.

Differentiating expected engagement with respect to m; (chain and product rules) yields

0
om;

Ele; | mi, 6;, Fi] =

Z k ((1 ~ i) k]_[lgr > g Ot _ y Ot k_lgr)

k
r=1 slgsaml 8m1r1

r=1 slgsami

+anTZgS a“S], (13)

where, for brevity, g, = g(u;(m;,r)), 9. = ¢ (u;(m;, 7)), and us = u;(my, s).
Assume that all other users report truthfully, that is, m; = 6; for all j € U\{i}. We
will show that truthful reporting is a best reply for user 7. Under this assumption, the

utility for each engagement level k is
ui(mia k; 9]'7-F) = _B(ml - 91)2 - (1 - ﬂ) Z (ml - ej)2'
JEFE
The first derivative with respect to m; is

8ui(mi, ]{?7 9]', JT")

8mi

= —2B(m; — 0;) —2(1 = B) >_ (mi —0;).

JEFF

Define z; = m; — 6;. Conditional on #;, the improper—prior assumption implies E[6; |
0;] = 0, so E[z; | 6;] = m; —6;, which equals zero under truthful reporting. All expressions
below are evaluated at m; = 6;, so the sincerity term —3(m; —6;)? vanishes identically, and

u;, g, and their derivatives depend only on the squared deviations 2]2. Hence the function

P 0 7.( iyk?eﬁ]:)
f(Z]) - U“BTJ

Hence, if we define

is odd in #z;, while the other terms are even.

h(ZJ) = uz(mz = 917k7 9]7'F)7

we have h(—z;) = h(z;), i.e. h is an even function of z;. The same property holds for
9(h(z;)) and ¢'(h(z;)).

Since the product of even functions is even, all terms in the first-order condition of
expected engagement (13) that do not involve f(z;) are even functions. Moreover, the
product of an even and an odd function is odd. Therefore, if we rewrite equation (13) as
a function of the z;, each summand is an odd function of the z;.

Because the expectation (integral over R) of any symmetric odd function is zero, the
first-order condition of expected engagement is zero when m; = 6; and m; = 0¢,. Hence,
truthful reporting is a best reply to truthful reporting. This reasoning establishes that,
evaluated at m; = 0;, the total derivative of expected engagement with respect to the
message m; is zero. This means that truthful reporting satisfies the first—order condition
for maximizing expected engagement. However, this does not yet guarantee that the

expected utility is maximized, since the latter expectation is taken over both e; and 6;.
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To conclude, we show that, for any given feed, if all other users report truthfully, user
1 maximizes her expected within—platform utility by reporting truthfully herself, that is,

Fix 0; and assume m; = 0, for all j # <. The within-platform expected utility is

E[ui<mi:9i;m7i) ‘ 91',}-1} = @E[ei | eiaﬂ}_BE[(ei_mi)Q | Qz}_(l—ﬁ)E[ Z (mi_9j>2

. €5
JEF,®

The second term is simply —3(m; — 6;)2. For the third term, apply the quadratic decom-
position

Taking conditional expectations given ¢, and using E[f; | 6;] = 6, (truthful reports and

conditional symmetry), the cross term vanishes and, for any engagement size k,

E[ > (mi—6;)°

Tk
JEF;

Oi,]—]} — k(m;—6)*+ 3 B[(6, 6" | 6)].

Tk
JEF;

Hence, irrespective of how e; is distributed,

E{ > (mi—6;)°

JEF

JEF

Substituting back, we obtain
E[Uz‘(mu@i;m—z‘) | 91',]:@} = aEle; | 0;, Fi] — [5 + (1 — B)Ele; | 917-7:2‘]] (m; — 6;)?
- (- BE] X (6;-0)°

. €
JEF®

Define the expected utility as a function of m; fixing the other players strategy, f(m;).

Then, its first derivative equals

f'(m;) = aaamiE[ei | 05, Fi] = 2[B+ (1= B)Ele | 6:, F)| (mi — 0;)—

0 Ele; | 0;, F;)(m; — 6;)°.

(1= B) g

The first term is zero at m; = 60;, because we already proved that truthful reporting
maximizes the expected engagement. The other two terms are trivially zero too. Hence,
we only need to show that the function is concave at m; = 6; to prove that it is a maximum

and, consequently, a best reply.
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2
£(my) = aa?E[ei | 0;, Fi] — 2|8 + (1 — B)E[e; | 6;, F]]

om;

32
—(1- B>8m2E[€i | 63, Fil(m; — 91')2

(3

Again, as truthful reporting is an engagement maximizing strategy, the first term is non-
positive, while the last two are equal to zero when m; = 6;. As the second term is strictly

negative, this proves that f”(m;) < 0 and then truthful reporting is a maximum. m|

Proposition A.2 (Truth-telling is the only g-robust equilibrium). Suppose users are
naive and the continuation rule g : R — (0,1) is C' and (weakly) increasing in the
inside—platform utility. If a message profile m = (m;); is a Nash equilibrium for every

such g, then m; = 0; for all 1.

Proof. Take g(u) = % for every u € R. Then,

8mi

=0.
Thus the optimal m; maximizes

B0 —mi)? — (1 _5)<€im?+]5[ > m;(0;)? 91,9} —QmiE[ > m;(6;) ’ ei,yD-

. g €, . 'E'
JEF? JEF?

Using a similar reasoning to the proof of Proposition 3.1, we can prove that truthful

reporting is the unique equilibrium. O
Proof of Proposition 3.3

Proof. We show this result in two steps. First, we prove that maximizing the probability of
user ¢ staying one more period means showing her in her feed the message of a user (that, of
course, has not appeared yet) who minimizes the expected conformity loss between them.
Second, we show that an algorithm that reversely ranks with respect to the expected

conformity loss to user ¢ is precisely the one that maximizes expected engagement.

The probability that, under algorithm .% , user i stays for one more period after reading
k posts is given by g(u;(k, m;,;m_;,.%,0;)). Let us refer to such probability as g(u;(k, %))
to easen notation. To maximize such probability, the platform chooses the next user to

appear in ¢’s feed according to

Fi(k) = argm;axl{Ep[g(ui(k, F))}
JeUNFH~

As g is increasing on u; and expectations preserve orders, maximizing E,[g(u;(k,.%))] is

equivalent to maximizing E,[u;(k,.#)] and, because of truthful reporting, the only term
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in user ¢’s within-the-platform utility u; that the platform can affect is conformity. Hence,

the platform effectively chooses the k-th user in i’s feed according to

Fi(k) = argmax { —E, | Y (6;—6)°+ (6, — 0,)

JEUNFS leFk
= argmax {—Ep [(02 - 0]»)2} } : (14)
jeu\FFt

Maximizing the probability of user ¢ staying for one more period is equivalent to

minimizing the conformity cost of such subsequent period.

Now, let us show that an algorithm built by choosing the next user according to
Equation (14) maximizes expected engagement. Given %, the probability of staying
at least until period k is H?;ll g(u;(k, F)), and the probability of staying precisely until
period k is

(1= glu(k, 7)) f[lgwi(j, 7).

Now, let us take two algorithms, namely .% and .%#’, such that the complete feed they
show to user ¢ is identical except from the fact that two users are interchanged, i.e., there

exist a pair of users ¢t and ¢’ such that

Moreover, we assume without loss of generality that —E, [(6; — 6,)*] > —E, [(6; — 6})?],
i.e., that .#; shows before the user who penalizes conformity the least among the two in
the pair. Also without loss of generality, we can reorder users so that ¢t = 1 and ¢’ = 2
and, then, g(u;(1, %)) > g(u;(1,.%")). The goal is to show that .%; yields higher expected

engagement, where the formal expression for expected engagement is precisely

B 6171 = 32 |8 (- st %))ngxk,ﬁnﬂ .

By construction, E,[g(u;(r, F))] = E,[g(u;(r,.#"))] for all > 2. Finally, as g(u,;(1,.%)) >
g(ul<1a<g;,))a

Zzi:l rE, [(1 — g(ui(r, F"))) T: g(uz(k’yl))H — E,[e:)| 7,

where the inequality can be shown to be true by induction. Finally, consider any algorithm
#. We have shown that taking any two users in a feed it induces and reordering them

reversely following their loss in conformity improves such feed. If we repeat this procedure
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until no further improvement is possible, we obtain the platform-optimal algorithm .

This argument finishes the proof. O

Lemma A.3. The posterior distribution of 0 conditional on 0 e is given by

1% 11t’12 11t

12;1903;% 1

a7 €i

where 1 is a n-vector of ones, Epe is the restriction of ¥ to the users in F/*,

and 6 g«

is the vector of private signals of the users in F;.

Proof. Let us assume, for simplicity, that the signals user ¢ observes in her personalized

feed Z/" are 0 zei = {01, ...,6.,}. We know that (0;...0,,) ~ N (6,3 s ) because of the

)

properties of the multinormal distribution. Now, the posterior distribution of # conditional

on 0z is proportional to the likelihood function:

- 1
90105 o (2w det(S5e)) exp [—(9 —0,)' ;10— 64

,L (3

-1/2 9 t
= (2mdet(X,e)) " exp |- (0713 sl = 201520050 + 0505105 )|

N—

Multiplying by the constant \/ 1x 7 1t \/ det(X ) we obtain:

[PST | (0% 35w 1)?
0|0 zei) = \| ———— — P11 — 2012710 e + ——
g( ‘ 7 ) 27 P 2 Fi* Fi T + ]12 ez]lt
_ , 12;1:1.99:1 2
]lzgei]].t ]12*161]]}
- 2m b 2 1
1275, 1t

1271 6 _e,

.. ., . . . . F T
This is the distribution function of a normal random variable with mean W and
variance ﬁ Thus,

1
9’0 N <]lzu@;i0!;iei 1 )
Fi —1 q¢ ° -1 q¢
]12%51. 1 ]lEy;i 1
as we wanted to show. |

Proof of Proposition 3.7

Proof. Before proving this Proposition, we will state and prove two lemmas.
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Lemma A.4 (Local swap and the best prefix length). Fiz a feed F' and a position k such
that F*=1 has composition (d,r) and the next two items are (R, D). Let F' be obtained
from F by swapping them to (D, R). If

Ud+1,r)<U(d,r+1),

then e*(F') > e*(F).

Proof. For all m < k — 1, U(F™) = U((F')™). At m = k, the prefixes differ and the
first inequality gives U((F')*) < U(F*). At m = k + 1, both orders reach composition
(d+1,r+1), so utilities coincide again; for m > k+ 2 compositions match. We only need
to study the effects on engagement of he positions k and k + 1. Define M = U(F, e*(F)).
By assumption

Ud+1,r)<U(d,r+1),

and then,
Ud+1,r) <M.

Hence e*(F') > e*(F). mi
Lemma A.5 (Explicit form of the swap condition). Under (5), the local comparison

U(d+1,7) < U(d,r+1) is equivalent to

1-5) _ —o*(1—x)(d—7) (1+z(d+7))
1-Xx — (4:cdr—dx+d+37’x+'r’—x+1)(4xdr+3dm+d—rw+'r’—x+1)
(15)

Moreover, for x € (0,1) the denominator on the right-hand side is positive, so the right-

hand side has sign —sgn(d — r) and equals 0 at d = r.

The previous lemma shows that the condition defined by Lemma A.4 will occur for
small values of A (when the user wants to learn) or for large values of § (when conformity
matters little).

Now, start from any feed F. Inspect F¢ () and whenever you find an adjacent pair
(R, D) at composition (d,r) satisfying (15), swap it to (D, R). After finitely many steps
you obtain F with e*(F) > e*(F). Each admissible local swap weakly increases e* by
Lemma A.4. By Lemma A.5, if the condition holds at (d, r) for an (R, D) pair, it continues
to hold when that pair shifts one step to the right. The procedure terminates because
each swap strictly reduces the number of (R, D) inversions before the first index where
(15) fails. For any subset of the feed not crossing a swap, d is unchanged; at a swapped
position we replace R by D, so d does not decrease. Maximizing e* over feeds yields the

concluding property. O

Proof of Proposition 4.1
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Proof. For any algorithm .%, the platform’s expectation over user i’s engagement is a
finite real number even if platform size grows asymptotically large. If platform size is n,

expected engagement is given by

B le] = B, [Z [ru ~ g, 7)) TJ glustk, 7))

r=1 k=1

Note now that we have assumed that there is some pair 0 < g < g < 1 such that for all
reR,0<g<g(x)<g<1 Thus'

E,lei)] = E, Z

(1 — glus(r. 7)) T (sl ﬂ*»]

k=1

:@éﬁﬁ@@wyw—g%mmﬁwﬁmmm%ﬂ
<E, -i:lrg"‘l —;Z:lrg’“] Zémr ! —i:l?“g

As this is true for all n € N, we can take limits and state that, when platform size grows

asymptotically large, user i’s expected engagement is finite:

lim E,le;] < lim rg ! — Tgrl = — — = . 16
Finally, let us define
k i {1?; € N such that k> ! }
; = min such that k > — —
" 1-7)* (1-g7?
1 g

and note that k, > 1 because > 1 if and only if (29 — g — g°) + (299> —

192 (g2

2g9) + (99° — g%g*) > 0, which holds precisely because 0 < g < g < 1 We can repeat this
proof for k, changing the expectation of the platform for the expectation of the user to
show the existence of k,.

Finally, we can take the maximum of all the k,, and define it as k,. Notice that this
is a natural number because it is bounded from above. To see this it is enough to take

the maximum of all the g and all the g and use equation (16). o
Proof of Proposition 4.2

Proof. To prove this statement, we first show that as the platform grows, it becomes
arbitrarily likely to find k users whose opinions are almost perfectly correlated with that
of user 7. Let p;; denote the correlation between users ¢ and j. Since each new user’s

correlation with ¢ is drawn from a process with full support on [—1, 1], the probability of

17 For notational convenience, we set the continuation probability after the last post to zero,
g(ui(n, #)) := 0, so that the generic expression Pr(e; = 7) = (1 — g(ui(r, #))) [ 1<, 9(wi(k, F))
also captures the terminal mass at r = n.
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drawing a user with correlation above 1 — ¢ is strictly positive for any £ > 0. Hence, by
the law of large numbers, the number of users satisfying p;; > 1 — ¢ grows linearly with
n. It follows that for every pair €,y > 0, there exists n € N such that for all n > n,
the probability that user 7 has at least k neighbors ji,...,j, with p; ; > 1 — ¢ for all
re{l,..., k} exceeds 1 — .

Applying the Cauchy—Schwarz inequality to the correlations between user ¢ and any

two of her neighbors, say j, and j;, we obtain

Pirgi = PiriPiri — \/(1 — 05 (1= p3F,)

Conditioning on the event that both users satisfy p; ; > 1 —¢ and pj,; > 1 — ¢, the
right-hand side is bounded below by 1 — 4¢ + 2¢2. Since each of these two events occurs

with probability at least 1 — ~, it follows that
P[pjr,jl > 1—de+ 252} > (1=7)% Yirir

Let X, := >%_; 1{p;; > 1 —¢}. Under independence across j and P(p;; > 1 —¢) =
p > 0, we have P(X,, > ¢;(n)) — 1 as n — oo. On the event {X,, > ¢;(n)}, the feed can
be chosen entirely from users with p;; > 1 — ¢, so by the Cauchy-Schwarz bound every
pair in the feed satisfies p,; > 1 — § with § = 4e — 2. Hence, for all large n,

P|A(n) < X > 1—7,

and in fact this probability tends to 1 as n — oo.

Now, for each platform size n, engagement levels may vary, but it is always bounded
by some k as already shown. The corresponding platform optimal feed is denoted by
2™ Let § = 4e — 222, For every § > 0 and v > 0, there exists some 7 € N such that,

for all n > n, the set of k users defined above satisfies

Plpjj >1—08]>1—~ forall jr,ji € {ji,--.,jr}s

which follows by choosing ¢ sufficiently small. For any given engagement level e;(n) < k,
the e;(n) users displayed in user i’s feed are selected from this set. Define the associated

e;(n) X e;(n) matrix

1 1-6 -+ 1-96
1-6 1 - 1-6

1—6 1—=9 --- 1
which represents the covariance matrix of size e;(n) signals with equal pairwise correlation

1 —9. Since, with probability at least 1 —~, every pair of users in the feed has correlation
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above 1 — 9, it follows that

where A(n) < X i denotes elementwise inequality. Although correlations across dif-
ferent pairs are not independent, this bound suffices to establish that, with probability
arbitrarily close to one for large n, the actual covariance matrix 3 ., dominates A(n)

elementwise. Now, we need an auxiliary result:

Lemma A.6 (Comparison under near—equicorrelation). Let e € N and o > 0. For any

d € (0,1), define the e x e equicorrelated covariance matrix
A= 02[(1 — 6117 + 516] :

whose off-diagonal correlations equal 1 — . Let ¥ be any symmetric positive definite
matriz with the same diagonal o* and off-diagonal elements satisfying .5 > o?(1—14) for
all r # s. Write ¥ = A+ E, where E is symmetric with zero diagonal and nonnegative
off—diagonal entries.

If the norm of the matriz E, ||E||op < 08, then both matrices are invertible and

e [ E1op

1™ "1-1"411 < .
= 06?1 — || Eop/(0%6)

(17)

In particular, if || E||op = o(1) (for instance, when all pairwise correlations in ¥ converge

to1—20), then
1'S7'1 = 1TA "1 4+ 0(1), where o(1) = 0 as n — oo.
Proof. Since ||[A™|op||Ellop < 1, the Neumann series expansion of the inverse is valid:
S '=(A4+E) ' =A"" - ATTEAT L AT'EATTEAT —

Let v = 1. Subtracting and bounding term by term gives

A~ I35 1 lop
1= [[A" lopl[ Elop

' (7 = ADul < S IATNIG I E G llulls =

op ull2-
k>1

For A = o?[(1 — §)uu' + 1], the eigenvalues are \; = 02(§ + (1 — §)e) along u and
Ay = -+ =\, = 02 on its orthogonal complement, so ||A™||o, = (028)~!. Substituting
this and ||ul|3 = e yields (17). Finally, because E has zero diagonal and 0 < E,, < 02,
its operator norm satisfies ||E||,, < eo?d. Thus the smallness condition can always be

enforced by taking ¢ sufficiently small or restricting to the high—correlation event. O

Therefore, on the high—correlation event of probability at least 1 — ~ (for all n large
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enough),

Aln) < % and 1"370 1 < 17A(n) 'L + o(1),

e;(n)
P!

where o(1) — 0 as n — oo (for fixed ¢). Taking reciprocals (which reverses inequalities

for positive terms) yields

1 1
<
ITA) 1 +o(1) = 178 L )1

= Var[9‘9y§i<n)} S 0’2.

ei(n)

o2 {1+ (ei(n) —=1)(1 - 0) }

Moreover, since 17 A(n) "1 = , we obtain

o {1+ (ei(n) —1)(1-0)}

ei(n)

—o(1) < Var {6 ‘ 0@%(70] < o2 with probability at least 1—+.

Letting n converge to infinity (for fixed §) the lower bound converges to 0?(1 — §); then

letting ¢ converge to zero gives

plim Var [9 ‘ 05@_61-(70} = g2,

n—oo

Proof of Proposition 5.1

Proof. We compare the large—n expected utilities of &2 and % for a naive user i.

We first study the utility under the platform optimal algorithm. By the closest—peers
result (Proposition 4.2), as n increases the feed under & selects users with p;; — 1 while

e; remains finite, so the conformity term vanishes:

n—00 -
JjEZ"®

Moreover, the posterior variance under & converges to the prior, so the learning term
equals (1 — A)o? in the limit. Hence

lim B Ui(ei,mi,m_;, a;, 2, 60;,0) ‘ 3”} =XaEfe; | 2] — (1 - \)o>.
We now study the utility under the reverse chronological algorithm. Users are not

selected by closeness, so the conformity term need not vanish. Using E[(QZ — «%)2] =

20%(1 — p;;) (and noting j = i contributes zero), we obtain

E| > (6, —0,) X\ .

. €;
JEZX;"

R =20"E| > (1-py)

je#; " \{i}
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If, under Z, E[p;j| = 0, then

E| Y (6;—0,)%|#| =20"E[e; — 1 | Z].

. e,
JEX"

For the learning term under £, the posterior—variance component equals (1 — \)o? EL% |
,@] (Equation (9)). Therefore,

n—oo

lim E{Ui(ei,mi,m_i,ai,%,é’i,@) ‘%] =
MaEle; | Z) - 21— )0’ Elei—1 | %)) — (1— Ao E[L | #].

To finish, let’s compare both terms. User i weakly prefers &2 to Z in the large—n limit iff
NaEle; | 2)-(1-N)o? > MaEle; | 2] —2(1 - B)0*E[e; — 1 | %])—(1-\)o?E[L | Z].

Rearranging yields

. (1~ B2 |4)) |
" a(Ble; | Z) —Ele: | Z) +2(1 - B)o*Ble; — 1 | Z) +0*(1 - B | Z])

€

Since & maximizes engagement, Ele; | | > Ele; | #], and because e¢; > 1, we have
EB | %} < 1. Taking the maximum over ¢ € U yields the stated threshold. O

Proof of Proposition 5.2

Proof. Let U;(k) denote user i’s expected utility after reading the first &k items of her feed
74

[

where the order of the remaining items is uniformly random. At depth k, the con-
tinuation decision compares the expected marginal gain from reading one more item with
the expected marginal cost. Reading one additional item increases the within—platform

engagement component by A a.

Disagreement term. Let %" denote the set of n—k—1 accounts the user has not yet
read. Because the next post comes from a random user j € %ZF, each such user appears
with probability 1/(n—k—1). Hence the expected disagreement cost of the next post is

the uniform average of the conditional variances of the remaining signals:

1 ) i
n—k—1 Z Ei[(ej —0;)" | 5?@}

k
JEZ;

Ei[(é?j —0;)? | %ﬂ =

Learning term. The learning component improves by the expected reduction in pos-

terior variance when moving from k to k+1 signals, i.e.
(1= X)(BVar(0 | 2] — B[Var(0 | £41)]).
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Marginal comparison. Combining these components, the expected change in utility

from reading one more post is

Uik +1) — Ui(h) =

va— ML S B0, - 07 4] + (1 X) (BlVar(9 | 28]~ BVar(0] ).

n—k—1 jeat

It is therefore optimal to continue scrolling iff U;(k+1) — U;(k) > 0, which yields exactly
the inequality in the statement. If the inequality fails (weakly), the user stops. m|

Proof of Proposition 5.3

Proof. The argument has two steps. We first compare conformity losses, then learning.

Signals are jointly normal with common variance o2, and
E|(0: — 0,)°] = 20*(1 - pyy).

First, we will study conformity under 4. Fix k := min{k € N: k> (1-g)"2—g(1 -
g)~?} as in the proof of Proposition 4.2. For every &, > 0 there exists n such that for

all n > n we can find a k-set of users {1,...,k} with
P[pij > 1—5} >1—v foreachj=1,... k.
Likewise, for every 4, ¢ > 0 there exists 7 such that for all n > 7 there is a user [ with
P[pil < —1+5} >1— .
Fix any engagement e; and take n > max{n,n}. Define the & prefix by
B ={1,1,...,e;— 1},

where the indices in {1,...,e; — 1} are chosen from the k-pool (so e; — 1 < k). Then, as
n — 0o,

plimp;; =1 foreach j e {1,... e — 1}, plim p; = —1.

Using the law of iterated expectations and decomposing 4 into the “closest block”

plus the out-group user [,

E| > (0:—0;)"| 2| =E| > (6:i—0;)°

JEB; jepiitt

2| +E[(0; - 0)?]

P+ 20 E[1l — pal.

=20°E| Y (1-py)

. e;—1
JjeEP"
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By bounded convergence, the first expectation tends to 0 (since p;; — 1 for all j in the

closest block), while the second tends to 402 (since py — —1). Hence, as n — oo,

E| > (6;—0))

. €,
JERB,"

Bl = ofl) + 4o?
~~

closest block  ©out-group !

Because Proposition 4.2 implies that the conformity loss under &2 vanishes, the two

algorithms differ asymptotically by a constant 402
Now we study learning under #. Under &, Proposition 4.2 (Prop. 4.2) shows that

learning vanishes asymptotically:
e €; 2
Var(0 {6, :j € Z{'}) — o
Intuitively, the feed becomes perfectly homogeneous, so observing additional similar sig-
nals conveys no new information.
Under &, by contrast, user ¢ also observes one maximally dissimilar signal 6, with
pa — —1. In a two-signal Gaussian system (6;,6;) with correlation p; and variance o2,
the posterior variance of 6 given both signals equals
2
o (1 + pﬂ)

Var(9 | 65, 0,) = TP,

As py; — —1, the denominator 1 + p; — 0, so the precision diverges and

Var(d | 0;,0,) —— 0.

n—oo

Since adding further (highly correlated) signals cannot increase posterior variance,
Var(0 {6, : j € #;'}) < Var(d | 6,,6,) — 0.

Thus, learning under # becomes asymptotically perfect.

To finish, let’s compare utilities and find the A that makes the user indifferent. The
only asymptotically nonvanishing differences between & and 4 are: (i) a constant con-
formity penalty of 402 under 4, (ii) the learning gain under %, and (iii) the difference in
expected engagement. Hence, & yields higher expected utility if and only if

)\(a(]E[ei | 2] —Ele; | #)) +402) < (1= o2,

that is,

0.2

< .
B a(E[ei | 2] — Ele; | %’]) + 502

Proof of Proposition 6.1
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Proof. Define

Ae; = Blei(n+ 1) — ex(n) | 0, @(n)] ,
ACZ =E Z (91 - Hj)Q - Z (01 - 9j)2 02‘, ﬁ(n) s
ez i (ny) je25i™ (n)

AV, :=E :Var(e ’ ey(n+1)> - Var(@ ‘ eﬁ(n))

From the utility definition,
AT, = >\<a Ae; — (1= ) Aci) _ (1= AV,

Whenever a Ae; — (1 — ) AC; + AV, # 0, the condition AU; > 0 is equivalent to

AV;
ale; — (1 —B)AC; + AV,

If the denominator is zero, then no threshold is needed. We now document the signs
under the platform-optimal algorithm.

Engagement. Notice that the expected engagement always increases when platform
size grows. So Ae; > 0.

Conformity (sum). Going from n to n+1 under & either leaves the feed unchanged
or replaces the least—correlated member k (with correlation p;.) by an entrant (n+1) with
Pitn+1) > pik- Using E[(0;—0;)%] = 20 (1—p;;) and the fact that all other users are common
to both feeds,

E;

> (0 — 9]-)2] weakly decreases, hence AC; <0,

jepe
with strict < 0 if the replacement is strict. Therefore —A\(1 — 8) AC; > 0.

Learning (variance). It is convenient to decompose the change into: (i) closest
replacement at fixed e;, and (ii) any increase in e;. For (i), replacing a signal by a
weakly more informative one (larger |p|) weakly reduces posterior variance in the Gaussian
setting; for (ii), when e; rises, the added posts can only help if they are informative, but

in general the net effect depends on the informativeness and correlation structure of the

added signals. Thus AV; can, in principle, have either sign.

Putting these pieces together:
ale; — (1 —-p5)AC; > 0 and AV is potentially sign—ambiguous.

Hence, inside the platform utility is always increasing while the effect on learning is
ambiguous. The inequality above gives the exact A-threshold that guarantees AU; >

0. If one restricts attention to the Gaussian case with closest replacement and (when
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applicable) at least one informative added post, then AV; < 0 and the right—hand side is
< 0; in that case AU; > 0 for all X\ € [0, 1], with strict improvement whenever at least

one of the weak inequalities is strict. ]
Proof of Proposition 6.2

Proof. Fix user ¢ who chooses engagement e;. By truth-telling, the sincerity term vanishes
at m; = 0; and is unaffected by the pool size. For n large enough so that the optimum is

interior (ef < n),

Blu, | #] = A|ae,— (1-8) 3 B((6: - 6, | 9)}.

. €,
JEF?

Under the standing assumptions (same variance and Gaussian signals with the usual

linear conditional mean), the expected conformity cost is
B((6: =0, | F) = 20(1 - pyy),
SO

Elu; | F] = )\[aei—Q(l—B)aQ > (l—pij)] = )\[(a—2(1—5)02)6i+2(1—5)02 > pz-]}.

. € e
JeF! JjEF"

Consider adding one more user j to the feed. The marginal change in expected inside

the platfor utility is
Au; = )\[a —2(1 — 5)02(1 — pij)} = A[a —2(1—=B)o* +2(1 — 5)02,)”}

Hence Au; > 0 iff

«

p’Lj > p* where p* =1 m

Note that if & > 4(1—)o? then Au; > 0 for every j € [—1, 1]; otherwise, only sufficiently
correlated users (those with p;; > p*) are marginally valuable.

By the standing full-support assumption on pairwise covariances (equivalently on p;; €
[—1,1]), for any fixed p* < 1 the probability of encountering users with p;; > p* is positive
and increases with platform size n. Consequently, the expected number of users with
positive marginal contribution grows with n, and the platform can form feeds that include
such users. Because the platform maximizes engagement rather than learning, it need not
always select the most correlated users; therefore, equilibrium feeds need not converge to
perfectly correlated signals, and learning need not vanish even in large platforms. In fact,
learning will improve as platform size increases, which implies that an increase in n will

improve both inside the platform utility and learning. O
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B Example
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Figure 1: Platform size n = 20.

Figure 2: Platform-optimal feed.
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Figure 3: Reverse-chronological feed. Figure 4: User-optimal feed.

Here we present the feeds user 1 would observe in a platform of size n = 20 (Figure 1)
with similarity matrix 3 as displayed below. We fix parameters to a = 0.001, A = 0.5
and = 0.2.

Platform-optimal feed. Displayed in Figure 2, it order users as 7, 10, 14, 13, 15,
19, 5, 17, 3, 9, 6, 16, 11, 8, 4, 12, 2, 20, 18, producing an expected engagement
(from the platform’s point of view) of 8.14 that we approximate to 8.

User-optimal feed. Displayed in Figure 4, it is generated by an algorithm that max-
imizes user 1’s expected utility. The order is 18, 7, 10, 14, 13, 15, 19, 17, 5, 3, 6,
11, 9, 16, 8, 4, 12, 2, 20 and induces expected engagement of 7.84, that we round
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to 8. This algorithm swaps user 5 and user 18, which is the least correlated one to user
1. This is precisely what the breaking-echo-chambers algorithm would do, and then we

observe here how similar both of them are.

Reverse-chronological feed. Displayed in Figure 3, it is a random feed for user 1.
The order is given by 7, 5, 20, 15, 6, 16, 17, 18, 19, 10, 3, 11, 14, 8, 4, 2, 13, 9, 12.
Engagement is high in this realization (namely, 7.81) just because user 7 is at the top of
the feed. However, the utility provided by this algorithm is substantially lower than that
of the other algorithms.
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-0.028
0.008

-0.008

-0.261
-0.05
0.018

-0.015
0.047
0.007
0.185

-0.014

0.01
0.137
-0.004

0.115
0.122
0.069
0.003
0.021
-0.259
0.059
-0.084

0.651
0.042
0.122
0.105
0.339
0.105
0.37
0.074
0.251
0.308
0.014
0.115

0.256
0.173
0.222
0.055
0.004
0.251
0.171

0.689
0.045
0.126
0.11
0.353
0.11
0.38
0.078
0.262
0.318
0.015
0.122
0.256

0.178
0.232
0.057
0.013
0.26
0.181

0.386
0.021
0.08
0.065
0.223
0.068
0.259
0.045
0.162
0.214
0.009
0.069
0.173
0.178

0.142
0.038
-0.028
0.168
0.099

0.009
-0.033
0.07
0.028
0.19
0.052
0.344
0.016
0.116
0.269
0.002
0.003
0.222
0.232
0.142

0.044
-0.261
0.165
-0.013

0.118
0.006
0.025
0.02
0.07
0.021
0.082
0.014
0.051
0.068
0.003
0.021
0.055
0.057
0.038
0.044
5
-0.011
0.053
0.03

-1.478
-0.183
-0.099
-0.167
-0.288
-0.109
0.042
-0.127
-0.277
-0.01
-0.028
-0.259
0.004
0.013
-0.028
-0.261
-0.011
)
-0.148
-0.428

0.327
0.001
0.1
0.068
0.277
0.082
0.381
0.046
0.191
0.308
0.008
0.059
0.251
0.26
0.168
0.165
0.053
-0.148

0.077

-0.483
-0.086
0.02
-0.034
0.05
0.003
0.277
-0.03
-0.003
0.202
-0.008
-0.084
0.171
0.181
0.099
-0.013
0.03
-0.428
0.077
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